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Abstract

This paper documents the strong relation that exists between the changing architecture of a complex flow system and

the maximization of global performance under constraints. The system is a surface with uniform heating per unit area,

which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling

network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the

smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second

construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the

cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that

emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal

number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase.

Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to

fixed size (cooled surface), pressure drop and amount of header material.
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1. Introduction

Constructal theory [1] is a hierarchical way of

thinking that accounts for organization, complexity and

diversity in nature, engineering and management. It was

first stated in 1996 in the context of optimizing the access

to flow between a point and an area, with application to

traffic and the cooling of electronics: ‘‘For a finite-size

open system to persist in time (to survive) it must evolve

in such a way that it provides easier and easier access to

the currents that flow through it.’’ The flow path was

constructed in a sequence of steps that starts with the

smallest building block (elemental area) and continued

in time with larger building blocks (assemblies or con-

structs). The mode of transport with the highest resis-

tivity (slow flow, diffusions, walking, and high cost) was

placed at the smallest scales, filling completely the

smallest elements. Modes of transport with successively

lower resistivities (fast flow, streams, vehicles, and low

cost) were placed in the larger constructs, where they

were used to connect the area-point or volume-point

flows integrated over the constituents. The geometry of

each building block was optimized for area-point access.

The constructal architecture that emerged was a tree in

which every geometric detail is a result––the tree, as a

geometric form deduced from a principle.

The thought that the same objective and constraints

principle anticipates the occurrence of flow structure in

natural system was named constructal theory. The ap-

plication of the principle in the development of engi-

neered flow architectures is constructal design. For

example, it was shown [1–3] that a volume that generates

heat at every point can be cooled with one stream by

distributing the stream through the volume as a tree-

shaped network, and by recollecting the stream by using

a second tree. The canopies of the two trees were su-

perimposed, so that every heat-generating point of the

volume was served by an arriving mini-stream of cool-

ant, and by a departing mini-stream of heated fluid. In
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terms of the tree analogs of river flow, the constructal

design consisted of designing over the given volume a

delta (the arriving coolant) superimposed over a river

drainage basin (the departing tree of heated fluid). At

each point in the volume, the fluid flowed from the delta

into the drainage basin, while removing the heat that

was generated locally.

Similar superpositions of tree canopies rule the de-

sign of many flow structures in living systems. Circula-

tory systems and vascularized tissues are configured as

two trees matched canopy to canopy. Arterial blood

arrives through a capillary vessel at the smallest (ele-

mental) volume of the vascularized tissue, and, later, the

same mini-stream departs as venous blood toward the

heart. Lungs are time-dependent (two-stroke) analogs of

the same two-tree design. The elemental volume (alve-

olus) receives a puff of oxygenated air during inhalation,

and returns the same puff as CO2-rich air during exha-

lation. The O2 and CO2 air flow trees are superimposed,

and their smallest ramifications are connected in each

elemental volume. This is why the matched trees are the

most effective flow structure: every single elemental

volume is served by fluid that, by necessity, must enter

and exit the large volume as one large stream.

Nomenclature

a diameter ratio defined by Eqs. (32) and (55)

A area, m2

A relative amount of materials for headers,

Eqs. (43), (56) and (57)

C coefficient, Eq. (37)

c1 factor, Eq. (26), m�3:75

D diameter, m

f friction coefficient for distributed pressure

drop

F two-phase multiplier for convective compo-

nent of heat transfer coefficient

h heat transfer coefficient, W/m2 K

H height, m

Dh latent heat of vaporization, J/kg

k thermal conductivity, W/mK, or index

m exponent, Eq. (7)

M molecular mass, kg/kmol

_mm mass flow rate, kg/s

n index, exponent or recirculation ratio

p pressure, Pa

Pr Prandtl number
_QQ thermal power, W

q00 heat flux, W/m2

Ra roughness, m

Ra0 reference roughness, 10�6 m

Re Reynolds number

S suppression factor for nucleate component

of heat transfer coefficient

T temperature, K

U liquid velocity, m/s

v specific volume, m3/kg

W width, m

x coordinate, m

x vapor quality

X Lockhart–Martinelli parameter

y coordinate, m

Greek symbols

g dynamic viscosity, Pa s

h dimensionless temperature difference

m kinematic viscosity, m2/s

n longitudinal coordinate, m

q density, kg/m3

U two-phase flow multiplier for distributed

pressure drop

w two-phase flow multiplier for local pressure

drop

Subscripts

0 elemental volume

1 inlet, horizontal plane, first construct

2 outlet

ab between port ‘‘a’’ and ‘‘b’’

ac between port ‘‘a’’ and ‘‘c’’

b nucleate boiling component or boiling fluid

c convective component or collecting header

cd between point ‘‘c’’ and ‘‘d’’

cr critical pressure

d distributing header

dc between point ‘‘d’’ and ‘‘c’’

i, j, k indexes

L liquid, linear

LO liquid only

LV vapor–liquid

M molecular mass effect

NB nucleate boiling

opt optimal

out outlet

p pressure effect

peak peak temperature

r reduced pressure, pr ¼ p=pcr
tt turbulent vapor and liquid

TP two-phase

V vapor

VO vapor only

w wall

x vapor quality effect
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In the matched-tree design of Refs. [1–3] the fluid was

single phase. In this paper we consider the more complex

and potentially more important application of this de-

sign approach to volumes cooled by streams that un-

dergo evaporation. The change of phase is attractive

from the point of view of increasing the cooling rate per

unit volume. On the other hand, the presence of phase

change complicates the design because of inherently

non-smooth distributions of temperature and pressure

along each elemental duct. Fundamentally, the same

issues are relevant to the design of volumes that must be

heated at every point by a tree of condensing fluid.

There are many applications in which phase-change

cooling must be distributed over entire areas and vol-

umes. The ice of a skating rink is maintained by the

cooling effect provided by a stream of evaporating re-

frigerant. The heating comes from the atmosphere. The

volume discussed in the preceding paragraphs is two-

dimensional (flat), and the volumetric heating rate is the

heat flux (q00) that arrives at the exposed surface of the

ice layer. A vertical cut through the ice floor is illustrated

in Fig. 1. A good assumption is that the heat flux q00 is
constant, and that the layers placed under the floor in-

sulate perfectly the underside of the structure. According

to this model, the volume inhabited by the floor struc-

ture is a volume with uniformly distributed heat gener-

ation. The purpose of the piping network is to provide

volumetric cooling in the most uniform manner possible,

and with minimal pumping power.

Similar applications of this geometric optimization of

two-phase flow distribution are found in the cooling of

electronics, where the two-dimensional volume is heated

by electronic circuits, components, and modules [1,4].

Additional examples are in air conditioning: the cooling

of an entire ceiling [5], the heat-pump heat exchanger

between the ground and the fluid loop (water, air) [6],

heat pumps driven by solar heating, where the solar

panel contains a distributed desorber [7], and various

cold storage applications [8].

2. Constructal tree flow structure

According to the constructal method, we view the

given volume as a morphing flow structure, which is a

construction made of building blocks of increasing sizes.

The volume is flat (two-dimensional) as in the example

shown in Fig. 2. It is bathed by one stream ( _mm), and the

heat addition per unit area is uniform (q00). In the sample

of Fig. 2, the volume is a first construct, i.e. an assembly

of a number of elemental volumes. Each elemental vol-

ume is cooled by a single pipe, which houses the smallest

stream of the ensuing flow network. The elemental vol-

ume is the smallest volume scale of the flow structure

that will eventually fill the given volume. Fig. 3 shows a

transversal cut (section A–A) through the elemental

volumes of Fig. 2.

The first construct chosen for illustration in Fig. 2

shows already how two tree flow structures are being

matched canopy to canopy. If the plane A–A cuts

through the middle of each elemental volume, then the

flow structure situated below this plane is the tree that

distributes the fluid, while the upper structure is the tree

that reconstitutes the stream. In this first-construct ex-

ample, each tree is a comb, or a rake. The top and

bottom headers are the stems. The single inlet and the

single outlet are the roots (source, sink) of the two trees.

Fig. 4 shows the design direction that can be followed

in order to cover larger volumes with increasingly more

complex tree flow structures. The second construct in-

dicated in Fig. 4 is made of three first constructs of the

type shown in Fig. 2. The entire structure of Fig. 4 is a

third construct, which consists of two second constructs.

The analysis described next outlines the application of

the objective and constraints principle in pursuit of the

optimal geometric features of the flow structure. The

strategy is to minimize the resistance to heat and fluid

flow at every step.

3. Optimal elemental cross-section

We begin with the optimization of the cross-sectional

shape of each elemental volume. This is an important

and very basic heat conduction optimization opportu-

nity, because at this smallest volume scale the heat q00

must flow by thermal diffusion through solid (e.g.,

Fig. 1. The multilayer structure of the ice floor of a skating

rink.

Fig. 2. First construct consisting of a number of elemental

volumes.
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concrete) before reaching the cooling surface of the

embedded pipe (Tw). The solid conduction domain of

thermal conductivity k is shown in the lower part of Fig.

3. The size of the domain is fixed,

Fig. 3. Transversal cut through the elemental volumes shown in Fig. 2.

Fig. 4. Larger volumes can be cooled with increasingly complex flow structures: a third construct consisting of two second constructs.

Each second construct is an assembly of three first constructs.
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A ¼ HW ; constant ð1Þ

The thermal boundary conditions are indicated on the

figure. The temperature field T ðx; yÞ in the �rectangle
with hole� domain is obtained by solving the steady state

energy equation

o2T
ox2

þ o2T
oy2

¼ 0 ð2Þ

We performed these computations by solving the con-

duction problem in dimensionless form, by using a finite

element method [9]. The highest temperatures occur in

the vicinity of the upper boundary, which receives q00.
The peak temperature (Tpeak) occurs in the two upper

corners. In the skating rink example of Fig. 1, the al-

lowable peak temperature is lower than the melting

point of ice. The temperature along the line between the

two Tpeak corners is lower than Tpeak. A good design is the

one in which the surface temperature is nearly uniform,

again, subject to real life constraints such as Eq. (1). The

search for this configuration is the same as the minimi-

zation of the global temperature difference across the

entire A domain, namely Tpeak � Tw. The configuration

has two degrees of freedom, which are represented by

the shape H=W and the ratio D=A1=2. The latter repre-

sents the volume allocated to duct flow relative to the

total volume (duct space and solid).

Fig. 5 shows one optimized cross-sectional geometry.

When D=A1=2 ¼ 0:565, the optimal aspect ratio of the

domain is ðH=W Þopt ¼ 0:83. This ratio does not depend

on k and q00. It depends only on the assumed value of

D=A1=2. By performing H=W optimizations for other

D=A1=2 values we constructed Fig. 6, which shows that

ðH=W Þopt is relatively insensitive to changes in D=A1=2.

The two extremes of the D=A1=2 range are not practical.

When D=A1=2 < 0:1 the overall thermal resistance (hpeak)

is too large, while in the range 0:8 < D=A1=2 < 1 the

large D weakens the mechanical structure. This means

that the example of Fig. 5 illustrates the optimal H=W
ratio for a wide range of intermediate and practical

D=A1=2 values.

4. Optimal tube diameter

Next, we search for the optimal tube wall tem-

perature (Tw) by minimizing the overall temperature

difference between the two-phase flow (saturation tem-

perature Tb) and the highest temperature in the ele-

mental cross-section (Tpeak). The optimal Tw value results

from the competition between conductances on the solid

side (k) and fluid side (hD).
The heat transfer coefficient (h) is commonly esti-

mated by modeling forced convection boiling as a su-

perposition of two heat transfer mechanisms, forced

convection and (hc) nucleate boiling (hb) [10–13]. Forced
convection is the dominant effect in the limit of small

heat fluxes and large mass velocities. Nucleation at the

wall is the dominant mechanism in the limit of high heat

fluxes and small mass velocities. These two regimes can

be joined smoothly into a correlation of the Churchill–

Usagi type [14], in which n ¼ 3:

h ¼ ðhnc þ hnbÞ
1=n ð3Þ

This correlation is based on measurements performed on

13 000 fluids in vertical and horizontal tubes [11–13].

The forced convection coefficient is referenced to the

liquid-only case (hLO),
Fig. 5. Temperature distribution in one optimized elemental

cross-section.

Fig. 6. The effect of the tube size on the optimized aspect ratio

of the elemental cross-section.
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hc
hLO

¼ F ¼ ð1
"8<

: � xÞ1:5 þ 1:9x0:6ð1� xÞ0:01 qL

qV

� �0:35
#�2:2

þ hLO
hVO

x0:01 1

"(
þ 8ð1� xÞ0:7 qL

qV

� �0:67
#)�2

9=
;

�0:5

ð4Þ

The heat transfer coefficient decreases drastically after

the boiling crisis point, and, if the tube is heated with

uniform heat flux, the wall temperature increases con-

siderably. In order to avoid this situation, the outlet

quality (x) is limited to the 0.6–0.7 range, such that the

second term of Eq. (4) becomes negligible:

hc
hLO

¼ F ¼ ð1
"

� xÞ1:5 þ 1:9x0:6ð1� xÞ0:01 qL

qV

� �0:35
#1:1

ð5Þ

For turbulent forced convection in the liquid-only re-

gime, which is a valid model in many practical situa-

tions, we rely on the Dittus–Boelter correlation

hLO ¼ 0:023
kL
D

4 _mm
pDgL

 !0:8

P 0:4
rL ð6Þ

The heat transfer coefficient in the nucleate boiling limit

is estimated with reference to, or as a departure from,

the heat transfer coefficient for pool boiling (hNB):

hb
hNB

¼ S ¼ q00

q000

� �n
D
D0

� �m Ra

Ra0

� �0:133

SpSMSx ð7Þ

When the tubes are horizontal, as in the present appli-

cation, the parameters for Eq. (7) are [11]:

M ¼ 0:56; m ¼ �0:5; Sp ¼ p0:35r ð1þ 17:6p3r Þ ð8Þ

SM ¼ M0:27;

SxðxÞ ¼
1þ 0:35x; q00 6 50000W=m2

1; q00 > 50000W=m2

(
ð9Þ

For the calculation of the pool boiling heat transfer

coefficient we used the procedure described in Ref. [12,

Section Hbb]. If the heat flux is below the value for the

onset of nucleate boiling, hb is zero.

A good evaporator is one where the walls are wetted

everywhere by saturated liquid. Such an evaporator is

said to be flooded. In a flooded evaporator the recircu-

lation ratio is larger than one, where the recirculation

ratio is the number of passes that the stream must make

through the evaporator until the evaporation is com-

plete. If the vapor quality of the stream is zero at the

inlet, the first law for the control volume drawn around

the refrigerant requires

_QQ ¼ _mmxoutDhLV ð10Þ

The recirculation ratio is

n ¼ 1

xout
¼ _mmDhLV

_QQ
ð11Þ

where _QQ is the thermal power. When _QQ and the satura-

tion temperature are specified, Eqs. (5)–(7) and (11)

show that hc and hb depend on n in the following

manner:

hc � n0:8 ð12Þ

hb � Sx ¼ 1þ 0:35
xout
2

¼ 1þ 0:175

n
ð13Þ

As a qualitative approximation, we superimpose the hc
and hb effects and obtain

h � n0:8 þ 1þ 0:75

n
ð14Þ

which suggests that a maximum h can be found. The

more accurate calculation takes into account the fact

that in this superposition the hc and hb terms are mod-

ulated by the factors F and S respectively. Extensive

measurements show that the heat transfer rate increases

considerably as the recirculation ratio increases from 1

to approximately 3 [15]. Further increases in the recir-

culation ratio do not lead to significant increases in heat

transfer rate, although the pressure drop increases dra-

matically. In sum, the recirculation ratio must be set in

the range 2–5 [15].

We now return to the search for the optimal tube wall

temperature, and perform the optimization at constant

recirculation ratio, i.e., constant mass flow rate. If we fix

ðH=W Þopt ¼ 0:83 and vary the tube diameter (or D=A1=2),

we obtain the curve with negative slope shown in Fig. 7.

When D increases, the temperature difference Tpeak � Tw
decreases because the tube approaches the corner of the

elemental cross-section. At the same time, the convective

component of the heat transfer coefficient decreases

as hc � D�1:8, in accordance with Eq. (6). The wall heat

flux decreases as q00w � D�1. Eq. (7) shows that hb �
ðq00wÞ

0:56 � D�0:56, which means that the temperature dif-

ference ðTw � TbÞ increases with D, while

Tw � Tb �
1

D
1

D�1:8 þ D�0:56
ð15Þ

This function has a positive slope for practical values of

D. We performed the minimization of ðTpeak � TbÞ for the
practical case of a skating rink cooled by ammonia re-

frigerant, at an evaporation temperature Tb ¼ �20 �C
and recirculation ratio n ¼ 5. The results for ðTpeak �
TbÞ, ðTw � TbÞ and ðTpeak � TwÞ are plotted in Fig. 7,

where hb and hpeak are the dimensionless temperature

differences
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hb ¼
Tw � Tb

ðq00=kÞðHW Þ1=2
ð16Þ

hpeak ¼
Tpeak � Tw

ðq00=kÞðHW Þ1=2
ð17Þ

The optimal tube diameter for minimum ðTw � TbÞ is

ðD=A1=2Þopt ¼ 0:2.
In summary, the ratios ðD=A1=2Þopt and ðH=W Þopt

represent the optimal cross-sectional shape of the ele-

mental volume. If the size of the elemental cross-section

is fixed, the performance level is the highest when the

overall temperature difference ðTpeak � TbÞ is minimum.

5. Optimal shape in the horizontal plane

The next step in the optimization of geometry is the

shape of the elemental volume in the horizontal plane:

the ratio L=W (Fig. 8). The horizontal area is fixed,

A1 ¼ LW ; constant ð18Þ

The objective is to minimize the overall temperature

difference ðTpeak � Tb2Þ, where Tb2 is the refrigerant tem-

perature at the outlet port, i.e., the lowest temperature in

the elemental volume. When L is large and D small, the

high pressure drop experienced by the evaporating fluid

will induce a large temperature drop Tb1 � Tb2. In this

limit W is small, and ðTpeak � Tb1Þ � ðTb1 � Tb2Þ. In the

opposite extreme (short L), the longitudinal temperature

drop ðTb1 � Tb2Þ is small, and the transversal tempera-

ture difference ðTpeak � Tb1Þ is large because of two ef-

fects: long conduction path, and small heat transfer

coefficient inside the tube.

The analysis begins with Eq. (16) and the optimized

elemental cross-section, H=W ¼ 0:83 and D=A1=2 ¼ 0:2,
which yield

W
D

¼ 5:55 ¼ A1

LD
ð19Þ

The Clapeyron relation expresses the longitudinal tem-

perature drop in proportion to the pressure drop,

dT
dp

¼ T ðvV � vLÞ
DhLV

ð20Þ

The longitudinal pressure gradient is given by [16]

dp
dn

¼ dp
dn

� �
LO

ULO ð0 < n < LÞ ð21Þ

where n is the longitudinal position, ðdp=dnÞLO is the

liquid-only pressure gradient

dp
dL

� �
LO

¼ �0:079
32

p2qL

pgL

4

� �0:25 _mm1:75

D4:75
ð22Þ

and ULO is a two-phase flow multiplier

ULO ¼ 1

�
þ 20

Xtt

þ 1

X 2
tt

�1=2

ð23Þ

In these equations gL and qL are the liquid viscosity and

density, and Xtt is the Lockhart–Martinelli parameter

X 2
tt ¼

1� x
x

� �1:8 qV

qL

gL

gV

� �0:2

ð24Þ

Eq. (20) yields

dT
dn

¼ dT
dp

dp
dn

¼ �Tc1ULO

1

D4:75
ð25Þ

where

c1 ¼
mV � mL
DhLV

0:079
32

p2qL

pgL

4

� �0:25� �
_mm1:75 ð26Þ

Assuming that the variation in saturation temperature

ðTb1 � Tb2Þ is small, we evaluate the thermophysical

properties of both phases at an average temperature so

that Eq. (25) becomes

dT
T

¼ �c1ULOD�4:75 dn ð27Þ

Fig. 7. The selection of the tube diameter by minimizing of the

overall temperature difference in the tube cross-section.

Fig. 8. The elemental volume, viewed from above.
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In this expression ULO is a function of longitudinal po-

sition (n), and so is the quality,

x ¼ q00pD
_mmDhLV

� �
n ð28Þ

By integrating Eq. (26) we arrive at the longitudinal

temperature drop,

Tb1 � Tb2
Tb1

¼ 1� exp

�
� c1
D�4:75

Z 5:55A1=D

0

ULOðnÞdn

�
¼ f ðDÞ ð29Þ

The numerical optimization reported in Fig. 9 was per-

formed for the same skating rink as in Section 4, for

which the assumed thermophysical properties are

DhLV ¼ 1:329	 106 J/kg, PrL ¼ 1:8, qV ¼ 1:6 kg/m3,

qL ¼ 665 kg/m3, gV ¼ 2:21	 10�4 Pa s, gL ¼ 8:5	 10�6

Pa s, kL ¼ 0:56 W/mK and cpL ¼ 4560 J/kgK. The

optimization consisted of minimizing the sum h1 þ hb,

where h1 represents the dimensionless temperature

change experienced by the refrigerant, from the inlet

(Tb1) to the outlet (Tb2),

h1 ¼
Tb1 � Tb2

ðq00=kÞðHW Þ1=2
ð30Þ

The optimal geometry in the horizontal plane is char-

acterized by

L
D

� �
opt

¼ 320;
L
W

� �
opt

¼ 58 ð31Þ

Fig. 9 also shows the effect of the drop in saturation

temperature (h1), which is due to the pressure drop. For

small tube lengths the pressure drop is small, and the

induced drop in saturation temperature (h1) is not sig-

nificant relative to the overall temperature difference

across the elemental volume. The influence of pressure

drop becomes important starting with a certain length

(L=D). The optimal length of the elemental volume is

slightly superior to the value at which the influence of

pressure drop can be observed.

6. First construct

A larger surface can be covered by arranging in

parallel a number (n1) of optimized elemental volumes,

as shown in Fig. 10. In order to equilibrate the flow

network, it is a common practice for skating rinks to use

orifices or balancing valves that compensate the differ-

ence in pressure drop along the headers. In general, only

the distribution header is provided with balancing ori-

fices. The collecting header is designed as a low-pressure

chamber. However, in the present approach we modeled

both headers as a succession of T-shaped fittings con-

nected with tube segments. In order to determine the

optimal design of this structure, we searched for the

diameters of the distributing and collecting headers (Dd1,

Dc1) by minimizing the pressure drop and the amount of

material used in the headers. We also used the notation

ad1 ¼
D
Dd1

� �2

; ac1 ¼
D
Dc1

� �2

ð32Þ

where D is the diameter of the elemental tubes. The local

pressure drops introduced by the kth dividing T in the

turbulent flow regime (Re > 104) are given by [17]:

ðDpk;abÞd ¼ 1
2
qðUkÞ2d½Kabðk; ad1Þ�d ð33Þ

½Kabðk; ad1Þ�d ¼ 0:03 1

�
� 1

k

�2

þ 0:35
1

k
� 0:1

1

k
1

�
� 1

k

�
ð34Þ

ðDpk;acÞd ¼ 1
2
qðUkÞ2d½Kacðk; ad1Þ�d ð35Þ

½Kacðk; ad1Þ�d ¼ 0:95 1

�
� 1

k

�2

þ 1

k2
1

�
þ 0:4� 0:1ad1

ad1

�

þ 0:4
1

k
1

�
� 1

k

�
1þ ad1
ad1

ð36Þ

Because in the collecting header the refrigerant is in

two-phase flow, the large differences between vapor and

liquid properties (viscosity, density, velocity) produce

significant increases in the local pressure drop. As is

shown in Ref. [18], for local resistances for fittings with

two-phase flow the pressure drop may be computed

based on liquid-only pressure drop and a two-phase flow

multiplier (WLO):

WLO ¼ 1þ Cxout
mV � mL

mL
; KTP ¼ KLOwLO ð37ÞFig. 9. The selection of the length of the elemental volume by

minimizing the overall temperature difference along it.
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where C ¼ 1:6 for T fittings, and C ¼ 0:8 for orifices.

The local pressure drops introduced by the jth collecting

T in the turbulent regime (Re > 104) are [17]:

ðDpj;abÞc ¼ 1
2
qðUjÞ2c ½Kabðj; ac1Þ�cWLO ð38Þ

½Kabðj; ac1Þ�c ¼ 0:03 1

�
� 1

j

�2

þ 1

j2
½0:62þ 0:38ð1� ac1Þ�

þ ð2� ac1Þ 1

�
� 1

j

�
1

j
ð39Þ

ðDpj;acÞc ¼ 1
2
qðUjÞ2c ½Kacðj; ac1Þ�dWLO ð40Þ

½Kacðj; ac1Þ�d ¼ �0:92 1

�
� 1

j2

�
� 1

j2

�
� 1:2þ 0:8 1

�
� 1

a2c1

��

þ ð2� ac1Þ 1

�
� 1

j

�
1

j
ð41Þ

In the distributing header, the pressure drop be-

tween the liquid inlet and any point labeled ‘‘c’’ in

Fig. 10 is maximum at the node (n1) situated near

the inlet. No supplementary local resistance (orifice

resistance ‘‘dc’’) is needed for the n1th elemental

tube. The orifice diameter decreases from tube ðn1 � 1Þ
to tube 1.

A similar pattern is present in the collecting header.

The largest pressure drop between a point of type ‘‘c’’

and the two-phase flow outlet corresponds to the first

tube, where no supplementary orifice resistance ‘‘dc’’ is

needed. The orifice diameter decreases starting with the

second tube. These features allow us to derive an ex-

pression for the pressure drop across the first construct,

without having to specify the orifice diameters:

Dp1 ¼ Dp0 þ ðDpn1 ;acÞd þ ðDp1;acÞc þ
Xn1�1

j¼1

ðDpj;LÞ

þ
Xn1
j¼2

ðDpj;abÞc ð42Þ

Fig. 10. The construction of the headers as an assemblies of T-shaped fittings linked with tube segments.
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The amount of header material used for a given floor

area, which must be minimized, is

A1 ¼
pðDd1 þ Dc1Þðn1 � 1ÞWopt

n1WoptLopt

¼ pðn1 � 1Þ
n1ðL=DÞopt

a�0:5
d1

�
þ a�0:5

c1

�
ð43Þ

Assuming that in the first construct the headers are

embedded together with the elemental tubes in the

same concrete layer, a header diameter larger than

(D=A1=2 > 0:8) weakens the mechanical structure (cf.

Section 3). From this observation follow two additional

constraints:

ad1 P 1
16
; ac1 P 1

16
ð44Þ

The first-construct design can be optimized in two

ways. One way is to fix the area A1, minimize the pres-

sure drop, and determine ad1 and ac1. The alternative is

to fix the pressure drop and minimize A1. In either case,

the pressure drop is bounded from above by a ceiling

value (Dp1) for which the operation of the refrigeration

plant is still economical. In the numerical optimization

we used the dimensionless constraint

D~pp1 ¼
Dp1

1
2
qU 2

1

¼ 300 ð45Þ

where U1 is the liquid-only velocity in each elemental

tube. All the pressure drop components in Eq. (42) may

be expressed in dimensionless form by using 1
2
qU 2

1 as

reference,

ðD~ppn1 ;acÞd ¼ ðn1ad1Þ2½Kacðn1; ad1Þ�d ð46Þ

ðD~pp1;acÞc ¼ a2c1½Kacð1; ac1Þ�cWLO ð47Þ

Xn1�1

j¼1

ðD~ppj;LÞc ¼ f1
W
D

� �
opt

a2:375c1

Xn1�1

j¼1

ðj1:75ÞULO;

f1 ¼ 0:079
U1D

m

� ��0:25

ð48Þ

Xn1
j¼2

ðD~ppj;abÞc ¼ a2c1
X

j2½Kabðj; ac1Þ�c
� �

WLO ð49Þ

where f1 is the friction coefficient for turbulent flow in

the elemental tubes [17]. To summarize, the optimization

statement is

min A1ðad1; ac1Þ; D~pp1
n

¼ 300; ad1 P 1
16
; ac1 P 1

16

o
ð50Þ

The numerical results are presented in Fig. 11. When n1
increases, the optimal headers diameters also increase.

As can be seen in Fig. 11, at n1 ¼ 16 the diameter of the

collecting header reaches the maximal value allowed by

the constraints (44), that is Dc1=D ¼ 4. Beyond this

stage, the first construct cannot grow because the

headers diameters become so large that they cannot be

embedded in the concrete layer.

The results of the optimization (50) are the header

diameters, ad1 and ac1. These values permit the compu-

tation of the local pressure drop coefficients for orifices

(and, from this, the orifices diameters) from the pressure

drop balances on the headers:

ðDpn1 ;abÞd ¼ ðDpk;cdÞd þ ðDpk;acÞd þ
Xn1�1

i¼k
ðDpi;LÞd

þ
Xn1
i¼kþ1

ðDpi;abÞd;

ðKk;cdÞd ¼
ðDpk;cdÞd
1
2
qU 2

1

ð51Þ

ðDpj;acÞc þ ðDpj;dcÞc ¼
Xj
i¼2

ðDpi;abÞc þ
Xj�1

i¼1

ðDpi;LÞc

þ ðDp1;acÞc;

ðKj;dcÞc ¼
ðDpj;dcÞc

1
2
qU 2

1WLO

ð52Þ

In order to obtain the best structures, for constructs

of higher order we increased the degree of freedom of

the design by abandoning constraint (44): the headers of

second constructs can be installed in a plane below the

concrete layer.

Fig. 11. Optimal header diameters for the first construct as a

function of number of elements.
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7. Optimal growth

The second construct consists of a number (n2) of

first constructs. Each first construct contains n1 ¼ 16

elemental volumes: this is the maximal number of ele-

ments forming a first construct that can be embedded in

the concrete layer (for n1 > 16 the headers weaken the

mechanical structure of the concrete layer, or do not fit

in its thickness). Constructs of higher order can be made

by assembling constructs of lower order so that the total

number of elemental volumes used is given by the

product n ¼ n1n2 � � � nk . The objective is to determine

the best topology of the tree-shaped network. Using the

method of mathematical induction, the following equa-

tions for pressure drop and the relative amount of ma-

terial for headers of a construct of any order can be

derived:

D~ppk ¼ D~ppk�1 þ
Yk
i¼1

ðniadiÞ
" #2

½Kacðnk ; adkÞ�d

þ
Yk�1

i¼1

n1

 ! Yk
i¼1

aci

 !" #2
WLO

þ
Yk�1

i¼1

nk

 !1:75 Yk
i¼1

ack

 !2:375Xk�1

i¼1

ði1:75Þfk/LO

þ
Yk
i¼1

aci

 !2Xk
j¼2

j2½Kabðj; ackÞ�c
� �

WLO ð53Þ

f2k ¼ f1
Y2k
i¼1

n2i

 !
L
D

� �
opt

;

f2kþ1 ¼ f1ðn1 � 1Þ
Y2kþ1

i¼1

n2iþ1

 !
W
D

� �
opt

ð54Þ

adi ¼
Ddi

Dd;i�1

� �2

; aci ¼
Dci

Dc;iþ1

� �2

; i ¼ 2; . . . ; n ð55Þ

A2k ¼ A2k�1 þ
pQ2k�1

i¼1 n2i�1

� �
W
D

� �
opt

Q2k
i¼1ðn2i � 1ÞQ2k

i¼1 n2i

	
Y2k
i¼1

adi

 !�0:5
2
4 þ

Y2k
i¼1

aci

 !�0:5
3
5 ð56Þ

A2k�1 ¼ A2k�2 þ
pQ2k�2

i¼1 n2i
� �

L
D

� �
opt

Q2k�1

i¼1 ðn2i�1 � 1ÞQ2k
i¼1 n2i � 1

	
Y2k�1

i¼1

adi

 !�0:5
2
4 þ

Y2k�1

i¼1

aci

 !�0:5
3
5 ð57Þ

The optimization problem statement for a structure of

the kth order is

min Akðad1; ad2; . . . ; adk ; ac1; ac2; . . . ; ackÞ;
n

ad1 P 1
16
; ac1 P 1

16
; D~ppk ¼ 300

o
ð58Þ

Fig. 12 was generated as a constructal sequence, by

growing the structure up to a construct of the fifth order.

The ordinate shows the relative amount of header ma-

terial defined by Eqs. (56) or (57). The total number of

elements (n) is plotted on the abscissa. For example,

when the total number of elemental volumes is between

32 and 80, the second construct performs best because it

requires the least material relative to other constructs

having the same number of elements (i.e. the same total

surface serviced). We checked every possible combina-

tion of constructs of the second order (n ¼ n1n2) and

reached the conclusion that the best are those of type

(16	 k) where k ¼ 2; . . . ; 5.
We proceeded similarly for constructs of higher

order. Only the best configurations are compared in Fig.

12. When n ¼ 64, the relative amount of material for the

third construct (16	 2	 2) is slightly higher than for a

second order construct (16	 4). Starting with n ¼ 96,

the third constructs perform better because less mate-

rial is needed to build headers for a structure with

(16	 2	 3) than for one with (16	 6). Fourth-order

constructs become best starting with n ¼ 832. Two

constructs of type (16	 2	 13) can be built with less

material than one construct of type (16	 2	 26) for the

same pressure drop. Fifth-order constructs are recom-

mended when n > 2560, when a structure of type

(16	 2	 2	 2	 20) can be built with less material than

one of type (16	 2	 40	 2).

Fig. 12. The amount of headers material relative to the useful

surface A, as a function of the number of elements, at fixed

pressure drop.
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After an initially rapid growth of the relative amount

of material, the slope of the curve in Fig. 12 (the relative

amount of material for headers A, versus the total

number of elemental volume n) decreases. At the same

time, the number of elements of the optimal construct

increases. If, on the other hand, the amount of material

for tubes cannot exceed a specified limit, the growth of

the dendritic structure must end with a construct of a

certain order of complexity.

8. Concluding remarks

In this paper we outlined the optimal design of a tree-

shaped network with an evaporating (two-phase) re-

frigerant, for cooling a surface exposed to uniform heat

flux. The design proceeds according to the constructal

method, by starting with the simplest (smallest, fixed

size) elemental volume, and continuing toward larger

assemblies.

The shape of the elemental volume was optimized in

three steps. First, the optimal cross-sectional aspect ratio

is ðH=W Þopt ¼ 0:83. This shape is independent of other

factors. The second optimization step yielded the best

tube diameter. This was achieved by minimizing to-

gether the conduction resistance between the corner of

the element cross-section and the tube wall, plus the

convective resistance between the tube wall and the

evaporating refrigerant. Because of the non-linearity of

the problem, this step was executed numerically for a

specific application (a skating rink). It was found that

ðD=A1=2Þopt ¼ 0:2, and that the recirculation ratio must

be chosen in the range 2–5. The third optimization of the

elemental volume was performed in the horizontal

plane, by fixing the elemental area and optimizing its

shape. The result was ðL=W Þopt ¼ 58.

In the second part of the paper, we showed that in

order to cover a large area with optimized elemental

volumes, the elements must be supplied with refrigerant

that flows through a tree-shaped network. The tree was

designed for minimum amount of header material and

fixed pressure drop. The diameters of the distributing

and collecting headers resulted from the optimization.

The first construct consisted of n1 parallel elemental

volumes. The headers of the first construct and the ele-

mental tubes were embedded in the concrete layer. By

limiting the header diameter to a maximal value that

does not weaken the mechanical strength of concrete, we

found that n1 cannot exceed 16.

The headers for constructs of higher order are

installed under the concrete layer. This offers con-

siderable freedom in optimizing subsequent stages of

the design, because the diameters of such headers are

not constrained by mechanical strength considerations.

For example, the second construct consists of n2 first

constructs, with 16 elements in each first construct. We

showed that the pressure drop along the headers of

the second construct dominates the pressure drop along

the first-construct header, because ðL=DÞopt > ðW =DÞopt.
This means that n2 < n1, which agrees with earlier fea-

tures of constructal tree sequences [1,19]. At every

step in the growth of the tree structure, the number of

elements in the longitudinal (L) direction is smaller

than the number of elements in the transversal (W ) di-

rection (see Fig. 4). The growth of the network is

achieved in alternating fashion: growth in the W di-

rection, growth in the L direction, growth in the W
direction, etc. Constructs of various levels of com-

plexity compete: the selected structure is the one that

minimizes the amount of header material at fixed

pressure drop. The topology of the structure depends

on the optimized shape of the elemental volume

[ðL=DÞopt and ðW =DÞopt], which is relatively insensitive

to operating conditions. It may be influenced, how-

ever, by the refrigerant type because of the thermo-

physical properties, which vary from refrigerant to

refrigerant.

The overall conclusion of this work is that it is pos-

sible and advantageous to optimize the architecture of

tree networks with two-phase flow. The optimized ar-

chitecture is generated in the pursuit of maximum global

performance subject to global constraints. The method

and results presented in this paper document the strong

connection between flow architecture (geometry) and

global performance. Geometry endows the system with

the ability to achieve high performance under con-

straints. This conclusion has important consequences for

manufacturers, especially for those in the field of ap-

plications cited in Section 1 [4–8]. Accordingly, they can

design and manufacture their networks in a modular

fashion, the main element being a first construct having

a fixed/predetermined number (n1) of pipes. Additional

applications are found in civil engineering [20], for ex-

ample, the distribution of hot or chilled water over a

territory [21,22].

For the special case considered in the figures the

skating rink––we conclude that the designer may con-

template performing maintenance work under the rink.

This is a very convenient solution, especially when the

basement is a parking lot, because it makes it easier to

set up the network and headers described above. Ana-

lyzed on a case-by-case basis, the optimized tree-shaped

network may be preferable to the generally used struc-

ture (or registers) of the pipes.
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